A mechanism for slow release of biomagnified cyanobacterial neurotoxins and neurodegenerative disease in Guam.

نویسندگان

  • Susan J Murch
  • Paul Alan Cox
  • Sandra Anne Banack
چکیده

As root symbionts of cycad trees, cyanobacteria of the genus Nostoc produce beta-methylamino-l-alanine (BMAA), a neurotoxic nonprotein amino acid. The biomagnification of BMAA through the Guam ecosystem fits a classic triangle of increasing concentrations of toxic compounds up the food chain. However, because BMAA is polar and nonlipophilic, a mechanism for its biomagnification through increasing trophic levels has been unclear. We report that BMAA occurs not only as a free amino acid in the Guam ecosystem but also can be released from a bound form by acid hydrolysis. After first removing free amino acids from tissue samples of various trophic levels (cyanobacteria, root symbioses, cycad seeds, cycad flour, flying foxes eaten by the Chamorro people, and brain tissues of Chamorros who died from amyotrophic lateral sclerosis/Parkinsonism dementia complex), we then hydrolyzed the remaining fraction and found BMAA concentrations increased 10- to 240-fold. This bound form of BMAA may function as an endogenous neurotoxic reservoir, accumulating and being transported between trophic levels and subsequently being released during digestion and protein metabolism. Within brain tissues, the endogenous neurotoxic reservoir can slowly release free BMAA, thereby causing incipient and recurrent neurological damage over years or even decades, which may explain the observed long latency period for neurological disease onset among the Chamorro people. The presence of BMAA in brain tissues from Canadian patients who died of Alzheimer's disease suggests that exposure to cyanobacterial neurotoxins occurs outside of Guam.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P 25: The Facilitatory Action of Snake Venom Phospholipase A2 Neurotoxins by Which Increase the Release of Acetylcholine, May Improve Alzheimer\'s Disease Symptoms

Introduction: In a serious brain disorder like Alzheimer's disease, the levels of acetylcholine (Ach) drop significantly. The gradual death of cholinergic brain cells leads to a profound loss of memory and learning ability. Acetylcholine is the chemical messenger that sends messages from one neuron to another in the area of the brain used for memory. Many of the current medications act to enhan...

متن کامل

Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam.

We here report biomagnification (the increasing accumulation of bioactive, often deleterious molecules through higher trophic levels of a food chain) of the neurotoxic nonprotein amino acid beta-methylamino-l-alanine (BMAA) in the Guam ecosystem. Free-living cyanobacteria produce 0.3 microg/g BMAA, but produce 2-37 microg/g as symbionts in the coralloid roots of cycad trees. BMAA is concentrate...

متن کامل

Cycad neurotoxin, consumption of flying foxes, and ALS/PDC disease in Guam.

The Chamorro people of Guam have been afflicted with a complex of neurodegenerative diseases (now known as ALS-PDC) with similarities to ALS, AD, and PD at a far higher rate than other populations throughout the world. Chamorro consumption of flying foxes may have generated sufficiently high cumulative doses of plant neurotoxins to result in ALS-PDC neuropathologies, since the flying foxes fora...

متن کامل

Beta-N-methylamino-L-alanine enhances neurotoxicity through multiple mechanisms.

The idea that the environmental toxin beta-N-methylamino-l-alanine (BMAA) is involved in neurodegenerative diseases on Guam has risen and fallen over the years. The theory has gained greater interest with recent reports that BMAA is biomagnified, is widely distributed around the planet, and is present in the brains of Alzheimer's patients in Canada. We provide two important new findings. First,...

متن کامل

Transfer of a cyanobacterial neurotoxin within a temperate aquatic ecosystem suggests pathways for human exposure.

beta-methylamino-L-alanine (BMAA), a neurotoxic nonprotein amino acid produced by most cyanobacteria, has been proposed to be the causative agent of devastating neurodegenerative diseases on the island of Guam in the Pacific Ocean. Because cyanobacteria are widespread globally, we hypothesized that BMAA might occur and bioaccumulate in other ecosystems. Here we demonstrate, based on a recently ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 33  شماره 

صفحات  -

تاریخ انتشار 2004